784 research outputs found

    Spherically symmetric dissipative anisotropic fluids: A general study

    Full text link
    The full set of equations governing the evolution of self--gravitating spherically symmetric dissipative fluids with anisotropic stresses is deployed and used to carry out a general study on the behaviour of such systems, in the context of general relativity. Emphasis is given to the link between the Weyl tensor, the shear tensor, the anisotropy of the pressure and the density inhomogeneity. In particular we provide the general, necessary and sufficient, condition for the vanishing of the spatial gradients of energy density, which in turn suggests a possible definition of a gravitational arrow of time. Some solutions are also exhibited to illustrate the discussion.Comment: 28 pages Latex. To appear in Phys.Rev.

    Topological Orthoalgebras

    Full text link
    We define topological orthoalgebras (TOAs) and study their properties. While every topological orthomodular lattice is a TOA, the lattice of projections of a Hilbert space is an example of a lattice-ordered TOA that is not a toplogical lattice. On the other hand, we show that every compact Boolean TOA is a topological Boolean algebra. We also show that a compact TOA in which 0 is an isolated point is atomic and of finite height. We identify and study a particularly tractable class of TOAs, which we call {\em stably ordered}: those in which the upper-set generated by an open set is open. This includes all topological OMLs, and also the projection lattices of Hilbert spaces. Finally, we obtain a topological version of the Foulis-Randall representation theory for stably ordered TOAsComment: 16 pp, LaTex. Minor changes and corrections in sections 1; more substantial corrections in section

    Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System

    Full text link
    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. The induced activity was determined by analyzing the gamma spectra. Based on the calculated radioactive inventory in the container, the dose levels due to the induced gamma radiation were calculated at several distances from the container and in relevant time windows after the irradiation, in order to evaluate the radiation exposure of the cargo handling staff, air crew and passengers during flight. The possibility of remanent long-lived radioactive inventory after cargo is delivered to the client is also of concern and was evaluated.Comment: Proceedings of FNDA 201

    Review of Dental Impression Materials

    Full text link
    Major advances in impression materials and their application have occurred during the last decade, with greater emphasis being placed on rubber impression materials than on dental compound, zinc oxide-eugenol, and agar and alginate. Of particular interest has been the effect of disinfection solutions on the qualities of impressions and the biocompatibility of impression materials. The principal advance in hydrocolloids has been the introduction of the agar/alginate impression technique, which has simplified the procedure and improved the quality of gypsum dies compared with those prepared in alginate impressions. The tear strength of some alginates has been improved, and some have been formulated so that the powder is dustless, thus reducing the health hazard as a result of patient inhalation of dust during the dispensing process. Polyether and silicone impression materials have been modified so that the working time, viscosity, and flexibility of the polyethers have been improved and, with the introduction of addition silicones, their accuracy has become exceptional. Although the early addition silicones liberated hydrogen after setting, thus delaying the pouring of models and dies, most addition silicones have been improved so that no hydrogen is released and dies can be poured immediately. The introduction of automatic mixing systems for addition silicones has simplified their manipulation, has reduced the number of voids in impressions, and has reduced the amount of material wasted. The incorporation of surfactants into addition silicones has made them hydrophilic, with wetting properties similar to those of polyethers, and has made pouring bubble-free gypsum dies easier. This review is confined to published and unpublished information of the past decade. It will also suggest trends that should be anticipated in the near future based on this information. The review will not present information developed before 1975, which is available in several textbooks on dental materials by Craig (1985a), Phillips (1982), and Williams and Cunningham (1979).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66604/2/10.1177_08959374880020012001.pd
    • …
    corecore